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Abstract: The estradiol derived ynone 2 is obtained via a 13 step sequence starting from estrone. One 
of the key-steps involves the addition to estrone derivative 3 of the lithio derivative 8. Obtention of the 
latter in enantiomericaUy pure form involves the lipase mediated kinetic resolution of racemic alcohol 
(+) 5. The triethylamine induced elimination of dimesylate 15 leads to the Bergman precursor 16, the 
cyclization of which at 25°C is estimated at h/2 = 20 min. © 1997 Elsevier Science Ltd. 

New perspectives in cancer chemotherapy have recently been opened through the discovery of  a new class 
of  anticancer antibiotics from a bacterial source that presently includes the esperamicins, calicheamicins, 
dynemicin and the neocarzinostatin, kedarcidin and C-1027 chromophores. 1 These natural compounds exert 
their biological activity through DNA cleavage which is effected by diradicals that are generated from cyclic 
polyunsaturated core structures upon suitable activation. 2 For the purpose of  developing site specific 
chemotherapeutic agents diyl-based DNA cleaving agents have been synthesized in which the core of  the 
diradical precursor is linked to known minor groove DNA binding agents and DNA intercalators, s A derivative 
in which the unsaturated core is embedded within a structure with known antitumor activity has also been 
reported. 4 

Recently we became interested in the development of  estramicins, derivatives with a chemotherapeutic 
potential in which the diradical precursor core is incorporated into estradiol. 5"b The latter is a potential vector to 
transfer cytotoxic agents into the nuclei of  human mammary cancer cells since these are usually rich in estrogen 
receptor. 6'7's In this context we recently reported on the elimination of  methanesulfonate l a  which led to the 
required cyclic enediyne core that was found to further cyclize via the Bergman process at 25°C with a half life 
of  108 min (Scheme l) .  9'5a 
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Although the diradical formation proceeds at a useful rate the above process suffers from important limitations: 
(i) the elimination conditions require the C17-hydroxyl group to be protected; treatment of  the unprotected 
derivative lh  with a large excess o f  DBU proved unsatisfactory. ~° Since the free I~-orientated C17-hydroxyl 
group is necessary for recognition by the receptor H the development of  a similar precursor, in which the 
generation of  the central (Z)-double bond would occur more readily and in the presence of  a free C 17-hydroxyl 
group, is mandatory; (ii) the synthesis of  derivative 1 involved a scheme that was unselective for the 
stereocenters at C22 and at C26 hence requiring a difficult separation by chromatography. 5a We now wish to 
report a solution to both shortcomings with the synthesis ofynone 2, a more suitable substrate for the generation 
of  a Bergman precursor. 
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"BrMgCH_~C---CH, Et:O, -30°C -~ rt, overnight; b lipase PS (Amano), vinylacetate, 30°C, 6 days; ¢ TBDMSCI, imidazole, CH2C12, rt, 
overnight: d nBuLi, 12, THF, -78°C, 3 h; ' AgNOffKCN, EtOI-I/H20/CH2CI2, 0°C --~ rt, 30 rain; fLiN(TMS)2, THF, -78°C, 1 h; g 
THF, -78°C --> rt, 4 h; h TMSOTf, 2,6-1utidin¢, CH2CI2, -78°C, 1 h; iCrC12/NiCI2, THF, rt, 5h; J Dess- Martin periodinane, CH2C12, 
rt, 1.5 h; kHF (aq. 48% wt), CH:CI2/CH3CN, 0°C ---} rt, 5 h; IMsCl (4 eq), EtaN (5 eq), cyclohexadiene (10 eq), C~I)60, rt; mMSC1 
(0.8 eq), Et3N (1.6 eq), C3D60, rt 

S c h e m e  2 

The synthesis of the estradiol derivative 2 is shown in scheme 2 and proceeds via the addition of the 
enantiomerically pure lithiated derivative 8 on the known estrone derivative 3. 5" Central in the synthesis of  the 
diyne derivative stands the kinetic resolution of alcohol (+)-5 that is obtained by Grignard addition of  
propargylmagnesium bromide to the known 3-trimethylsilyl-l-propynal 4. lz13 The resolution was effeeted via 
esterification of the alcohol with vinylacetate using Lipase PS ofAmano)  4 After chromatographic separation the 
required alcohol (-)-5 was obtained in 43% yield (ee>95%) t5 next to acetate 6 (39*/, yield)) 3 The absolute 
stereochemical assignment rests on the application of Mosher's model on the corresponding O-methylmandelate 
esters of 5.16 The further transformation of (-)-5 into the lithiated derivative 8 involved: (i) protection of the 
hydroxyl group with tert-butyldimethylsilyl chloride and imidazole in diehloromethane (93% yield); (ii) iodination 
via n-butyllithium deprotonation followed by the addition of iodine at -78°C (quantitative); (iii) selective 
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desilylation using silver nitrate and potassium cyanide in ethanol-water-dichloromethane (57%); 17 (iv) 
deprotonation using lithium hexamethyldisilazide in tetrahydrofuran (-78°C). 

In analogy with the synthetic scheme leading to 1, s" the addition of $ to 3 occurred from the <x-side leading 
to 9 in 67% isolated yield.~3']8 Protection of the C 17-hydroxyl group as trimethylsilyl ether using trimethylsilyl 
trifluoromethanesulfonate and 2,6-1utidine in dichloromethane led to concomitant ace~al deprotection. 19 The 
resulting iodoalkyne-aldehyde 10 was contaminated with up to 40% deiodinated derivative 11 which was 
recovered after the cyclization stage) 3 Cyclization was effected using the intramolecular version of Nozaki's 
chromium(II)/nickel(II) salt mediated coupling ofhaloalkynes with aldehydes, 2° a method that is especially useful 
when dealing with enolizable aldehydes, and led to a 1:6 mixture of the diastereomeric alcohols 12 and 13 in 
71% yield (based on the 60% iodide content of the starting material)) 3 Both alcohols can be separated by 
column chromatography and led via oxidation with Dess-Martin periodinane in dichloromethane to the same 
ynone 14 (65% yield)) 3'2]'22 Full deprotection was effected using aqueous hydrofluoric acid and gave the 
desired 2 in 66% isolated yield.13'~ 

The generation of the enediyne core from 2 and subsequent Bergman cyclization were followed by IH- 
NMR. When 2 was treated with methanesulfonyl chloride (4 equiv) and triethylamine (5 equiv) in the presence 
of 1,4-cyclohexadiene in acetone-dr the bis-mesylate 15 was formed) 3 Upon further addition of methanesulfonyl 
chloride (0.8 equiv) and triethylamine (1.6 equiv) the AB pattern for the hydrogen atoms of the (Z)-enediyne 
system in 16 (5 = 6.54, 6.31 ppm; J = 9.65 Hz) appeared. By following their disappearance a half-life value of 
20 min was determined. From the rather complex reaction mixture the expected aromatic ketone (R = Ms) 17 
was isolated in low yield (10%). t3 

The greater reactivity of the conjugated ynone precursor 16 compared to the reduced substrate derived 
from la is in line with results that have been reported for chinone derived cyclic enediyne systems) 4 The results 
of the biological evaluation will be reported in the full account. 
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